Блог об образовании

Основные тригонометрические формулы

В самом начале этой статьи мы с Вами рассмотрели понятие тригонометрических функций. Основное назначение их назначение – это изучение основ тригонометрии и исследование периодических процессов.

Таблица тригонометрических функций

Опять возвращаемся к пройденному: зная тригонометрическую функцию мы знаем соответствующий угол и наоборот.

Значение тригонометрических функций

Кому-то тригонометрия покажется слишком мудреной – сплошные синусы и косинусы. Но стоит в ней поглубже разобраться и все становится проще простого, некоторым она даже понравится.

Решение логарифмических неравенств

Все, что говорилось выше про логарифмические уравнения полностью относится и к логарифмическим неравенствам.

Решение логарифмических уравнений. Как решать, на примерах.

Логарифмическим уравнением называется уравнение, в котором неизвестное (х) и выражения с ним находятся под знаком логарифмической функции.

Формулы логарифмов. Логарифмы примеры решения.

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения.

Ранее мы уже познакомились с понятием логарифма. А также рассмотрели основные свойства и примеры решения.

Решение логарифмов. Свойства логарифмов.

Решение логарифмов подразумевает не только вычисления, но и преобразования, причем согласно определенным свойствам логарифмов. Рассмотрение свойств и решения логарифмов подразумевает, что вы уже знакомы с общими понятиями.

Логарифмы. Натуральный логарифм, десятичный логарифм.

Логарифмы и их свойства широко применяются в математике для решения разного рода задач, причем проистекают они из достаточно простых основ.

Возьмем для наглядности простой пример, который можно решить в уме:

2x = 4

В этом уравнении х стоит в показателе степени, поэтому такое уравнение называется показательным. Для его решения достаточно в уме подобрать нужный х, это будет 2, ведь 22 = 4.

Попробуем усложнить задачу:

Замечательные пределы: Первый и второй замечательный предел.

Понятие замечательных пределов используется на просторах бывшего Советского Союза для обозначения хорошо известных математических тождеств со взятием предела.

Вычисление пределов. Пределы с неопределенностью

Прежде чем рассказать о вычислении пределов с неопределенностью, хочется верить, что у вас уже есть понимание того, что такое предел и как вычислить элементарные пределы.

Пределы. Понятие пределов. Вычисление пределов.

Понятие пределов рассмотрим на показательных примерах.

Пусть х – числовая переменная величина, Х – область ее изменения. Если каждому числу х, принадлежащему Х, поставлено в соответствие некоторое число у, то говорят, что на множестве Х определена функция, и записывают у = f(x).

Линейные неоднородные системы дифференциальных уравнений

Неоднородную систему дифуравнений обычно представляют в следующем виде:

Неоднородные системы ДУ

В отличие от однородной системы, здесь в каждом уравнении добавляется некая функция, которая зависит от t. Функции f(t) и g(t) могут быть как const, exp, так и sin, cos и т.д.

Пример.

Необходимо найти частное решение системы линейных дифуравнений
Неоднородные системы ДУ при начальных условиях x(0) = 6, y(0) = 5.

Системы дифференциальных уравнений

Системы дифференциальных уравнений бывают двух основных типов - линейные однородные и неоднородные. Решать системы дифференциальных уравнений можно также двумя основными способами решения:

Дифференциальные уравнения

Дифференциальным уравнением называют уравнение, содержащее производную или несколько производных неизвестной функции.

Порядок дифференциального уравнения - это порядок старшей производной неизвестной функции, входящей в это уравнение.

Как решать уравнения с дробями. Показательное решение уравнений с дробями.

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, как решать уравнения с дробями.

RSS-материал