Предлагаем вам удобный бесплатный онлайн калькулятор для решения квадратных уравнений. Вы сможете быстро получить решение квадратного уравнения онлайн и разобраться, как они решаются, на понятных примерах.
Чтобы произвести решение квадратного уравнения онлайн, вначале приведите уравнение к общему виду:
ax2 + bx + c = 0
Заполните соответственно поля формы:
Как решить квадратное уравнение
Как решить квадратное уравнение:
Виды корней:
1. Привести квадратное уравнение к общему виду:
Общий вид Аx2+Bx+C=0
Пример : 3х - 2х2+1=-1 Приводим к -2х2+3х+2=0
2. Находим дискриминант D.
D=B2-4*A*C .
Для нашего примера D= 9-(4*(-2)*2)=9+16=25.
3. Находим корни уравнения.
x1=(-В+D1/2)/2А .
Для нашего случая x1=(-3+5)/(-4)=-0,5
x2=(-В-D1/2)/2А.
Для нашего примера x2=(-3-5)/(-4)=2
Если В - четное число, то дискриманант и корни удобнее считать по формулам:
D=К2-ac
x1=(-K+D1/2)/А
x2=(-K-D1/2)/А,
Где K=B/2
1. Действительные корни. Причем. x1 не равно x2
Ситуация возникает, когда D>0 и A не равно 0.
2. Действительные корни совпадают. x1 равно x2
Ситуация возникает, когда D=0. Однако при этом, ни А, ни В, ни С не должны быть равны 0.
3. Два комплексных корня. x1=d+ei, x2=d-ei, где i=-(1)1/2
Ситуация возникает, когда D<0.
4. Уравнение имеет одно решение.
A=0, B и C нулю не равны. Уравнение становиться линейным.
5. Уравнение имеет бесчисленное множество решений.
A=0, B=0, C=0.
6. Уравнение решений не имеет.
A=0, B=0, C не равно 0.
Для закрепления алгоритма, вот еще несколько показательных примеров решений квадратных уравнений.
Пример 1. Решение обычного квадратного уравнения с разными действительными корнями.
x2 + 3x -10 = 0
В этом уравнении
А=1, B = 3, С=-10
D=B2-4*A*C = 9-4*1*(-10) = 9+40 = 49 квадратный корень будем обозначать, как число1/2!
x1=(-В+D1/2)/2А = (-3+7)/2 = 2
x2=(-В-D1/2)/2А = (-3-7)/2 = -5