Онлайн калькулятор
Решение матриц
Конвертор величин
Решение кв. уравн.
Таблица Брадиса
Тригоном. таблицы
Тесты и игры
Решить задачу
Таблица производных
Калькулятор дробей
Фонетический разбор
Редактор формул
Понятие замечательных пределов используется на просторах бывшего Советского Союза для обозначения хорошо известных математических тождеств со взятием предела. Замечательны они потому, что они уже доказаны великими математиками и нам нам остается лишь пользоваться ими для удобства нахождения пределов. Из них наиболее известны первый и второй замечательные пределы. Дальнейшее чтение статье будет намного интереснее, если вы уже знакомы с понятием пределов. Если для вас lim , это то что новое, то рекомендуем к прочтению статью "Пределы. Понятие пределов. Вычисление пределов."
Теперь со спокойной душой переходим к рассмотрению замечательных пределов.
Первый замечательный предел имеет вид .
Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.
Пример.
Необходимо вычислить предел
Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.
Согласно нашему правилу №1 подставим вместо х ноль:
Получаем неопределенность .
Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:
Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:
Подставим решение первого замечательного примера и получаем:
Упрощаем дробь:
Ответ: 7/3.
Как видите – все очень просто.
Второй замечательный предел имеет вид , где e = 2,718281828… – это иррациональное число.
Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .
Пример.
Необходимо вычислить предел
Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.
Как всегда воспользуемся правилом №1 – подставим вместо х:
Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :
Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:
Не забываем выделять наш замечательный предел:
Дальше знак предела перемещаем в показатель:
Ответ: .
Вот такие действительно замечательные пределы!
Если у вас остались какие то вопросы по первому и второму замечательным пределам, то смело задавайте их в комментариях.
Всем по возможности ответим.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.
>>>> Просто заполните заявку!
Мало информации? - Вы можете подробнее узнать о сервисе...!
Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.
А пределы-то действительно замечательные. Я раньше такого понятия не встречала, но соглашусь, что название подобрано очень правильно. Я так понимаю, что для того, чтобы их использование облегчило решение, нужно их для начала просто "заметить" )))
Что-то я ничего замечательного в этих пределах не заметил. Почему их так называют? Потому что они давно доказаны? Так многие вещи в математике давно доказаны. И называют их аксиомами, если я не ошибаюсь
Ой, а что такое "замечательные пределы" и где вообще они используются? Я если честно, то услышал такое название в первые, потому что в школе точно не проходили. В институте так же не припомню всех этих тонкостей. Расскажите, когда они применяются в жизни?
В чем отличие первого от второго замечательных пределов? Понятно, что уравнения, но в чем их главная разница? И если есть отличия, то как найти их сразу, чтобы долго время не терять и не думать где правильно и где нет.
Да уж смешное немного название - "замечательные" пределы". Вон какую бурю комментариев вызвало. Но вот где применяется первый , а где применяется второй замечательный предел я так и не понял.